The aim of this work is to make an overview on the emerging technologies and traditionally used to develop functional foods. In this way, we classified the technologies used in three main groups and analyzed the research tendency since the year 2000 until now. Thus, while traditional techniques are the most commonly used for development of functional foods, from years 2000 until 2010 the techniques aimed towards personalized nutrition have grown greatly.

Introduction

In the last decades consumer demands in the field of food production have changed considerably. Consumers more and more believe that foods contribute directly to their health (Mollet & Rowland, 2002). Today foods are not intended to only satisfy hunger and to provide necessary nutrients for humans but also to prevent nutrition-related diseases and improve physical and mental well-being (Nöthlings, Murphy, Wilkens, Henderson, & Kolonel, 2007; Takachi et al., 2008). According to the World Health Organization and the Food and Agriculture Organization, several dietary patterns along with lifestyle habits constitute major modifiable risk factors in relation to the development of coronary heart disease, cancer, type 2 diabetes, obesity, osteoporosis and periodontal disease (WHO, 2003). In this regard, functional foods play an outstanding role (Fig. 1). The increasing demand on such foods can be explained by the increasing cost of healthcare, the steady increase in life expectancy and the desire of older people for improved quality of their later years (Roberfroid, 2007).

Innovation is today’s business mantra. Experts proclaim daily that the only hope for business survival is the ability to continue innovating. In this context, the development of new functional food products turns out to be increasingly challenging, as it has to fulfill the consumer’s expectancy for products that are simultaneously relish and healthy (Shah, 2007).

Developing a new functional food is an expensive process. Product development requires detailed knowledge of the products and the customers, which is why quantitative and qualitative marketing studies must be carried out before launching any product on the market (Beardsworth & Keil, 1992). The high reported failure rates for new international functional foods suggest a failure to manage the customer knowledge effectively, as well as a lack of knowledge management between the functional disciplines involved in the new product development process (Jousse, 2008). The methodologies that advance a firm’s understanding of customer’s choice motives and values, and its knowledge of management process, can increase the chances of new product success in the international market. The commercial success of functional products ultimately depends on taste, appearance, price, and health claim appeal to consumers. They need to receive a comprehensible and reasonable message about the physiological effects of food in humans, without appearing to be exaggerated; Moreover, all the factors mentioned previously influence directly the consumers’ attitudes toward effective purchase, which is necessary for the maintenance of industry. In summary, the food industry takes into consideration many variables to develop or reengineer functional products, such as sensory acceptance, stability, price, chemical, functional properties (Granato, Branco, & Nazzaro, 2010) and convenience. A great variability of techniques are required in order to meet needs and expectations in the area of functional foods. The aim of this review is to make an overview on the emerging technologies and traditionally used to develop functional foods. In this way, we classified the technologies used in three main groups and analyzed the research tendency since the year 2000 until now (Fig. 2). The first group is formed by the technologies traditionally used in food processing, formulation and blending and cultivation and breeding. The second group is constituted by the technologies that forming a structure try to prevent
the deterioration of physiologically active compounds; microencapsulation, edible films and coatings and vacuum impregnation are part of this group. Finally, the third group we classified is formed by those technologies, recent technologies, aimed to design personalized functional foods.

Adaptation of general technologies traditionally used in food processing

Formulation and blending

Formulation and blending constitutes a simply and cheap technology to develop new functional foods and has been widely used in food processing. Its use in functional food development has a long history for the successful control of deficiencies of vitamins A and D, several B vitamins (thiamine, riboflavin and niacin), iodine and iron. Salt iodization was introduced in the early 1920s in both Switzerland (Burgi, Supersaxo, & Selz, 1990) and the United States of America (Marine & Kimball, 1920) and has since expanded progressively all over the world to the extent that iodized salt is now used in most countries. From the early 1940s onwards, the fortification of cereal products with thiamine, riboflavin and niacin (Kyritsi, Tzia, & Karathanos, 2011) has become common practice. Margarine was fortified with vitamin A (FAO & WHO, 2006) in Denmark and milk with vitamin D (FAO & WHO, 2006) in the United States, then enriched with phytosterols and used by patients with high cardiovascular risk (Laforest et al., 2007). Folic acid fortification of wheat (Samaniego-Vaesken, Alonso-Aperte, & Varela-Moreiras, 2010) became widespread in the Americas, a strategy adopted by Canada and the United States and about 20 Latin American countries. In more recent years, the emergence of dietary compounds with health benefits offered an excellent opportunity to improve public health and thus, this category of compounds received much attention from the scientific community, consumers and food manufacturers. The list of dietary active compounds (vitamins, probiotics, bioactive peptides, antioxidants...) is endless and the type of final products obtained is growing steadily (Wildman,
From the classical enriched milks (Alzate, Pérez-Conde, Gutiérrez, & Cámara, 2010; Kim et al., 2010) and yogurts (Karaaslan, Özden, Vardin, & Turkoglu, 2011; Zare, Boye, Orsat, Champagne, & Simpson, 2011) through infant formula enriched with prebiotics (Alliet et al., 2007), probiotics (Puccio et al., 2007), vitamins (Chávez-Servin, Castellote, & López-Sabater, 2008) and long chain polyunsaturated fatty acids (Chávez-Servin, Castellote, Martin, Chifré, & López-Sabater, 2009) to provide infants with the required nutrients for optimal growth and development, until juices mainly enriched with flavonoids (González-Molina, Moreno, & García-Viguera, 2009), vitamins (Rivas, Rodrigo, Company, Sampedro, & Rodrigo, 2007) and resveratrol (González-Barrio, Vidal-Guevara, Tomás-Barberán, & Espín, 2009), snacks (Da Costa et al., 2009), pastas rich in legumes (Petiot, Boyer, Minier, & Micard, 2010) and meats enriched with large number of bioactive compounds (Jiménez-Colmenero, Sánchez-Muniz, & Olmedilla-Alonso, 2010; Zhang, Xiao, Samaraweera, Lee, & Ahn, 2010) are being developed by formulation.

Cultivation and animal breeding techniques

Agriculture and livestock provide the primary source of the nutrients required by human. There is a general consensus among nutritionist that the best way to tackle micronutrient deficiency is through diversification in diet to include vegetables, fruits, meat and fish (FAO & WHO, 2001). However, this is not always possible. Agriculture and livestock have been traditionally presented a way to obtain products with high nutrients. In cases where agronomic and breeding approaches cannot achieve significant improvement of food products, biotechnology offers a useful alternative (Zhao & Shewry, 2011).

Biotechnology has been practised in crops and animal breeding since the beginning of human history. The evaluation and selection of different breeds started with the domestication of animal and plant species around 12,000 years ago, which was led by the wish to obtain desired traits, dictated by social, nutritional and environmental needs with no understanding of the molecular processes involved (National Research Council, 1989, p. 16).

Going not so far in time, with the use of molecular biology tools and the development of genetically modified seeds, the biotechnology turned into a modern technique which offers an additional way to modify composition of foods. The most known enriched crop product is the Golden Rice (Ye et al., 2000) that has 1.6 μg/g total carotenoids in the rice endosperm. The second generation of Golden Rice (Golden Rice 2) (Paine et al., 2005) contains up to 37 μg/g of total carotenoids. A recent clinical trial shows that the Golden Rice 2 is an effective source of vitamin A for humans, with a b-carotene to retinol conversion efficiency (Tang, Qin, Dolnikowski, Russell, & Grusak, 2009), and locally adapted varieties of Golden rice are expected to reach the market in 2012 (Potrykus, 2010). The fortification of vitamin A has been carried out also in other food crops like potato (Tanumihardjo, Bouis, Hotz, Meenakshi, & McClafferty, 2008) and maize (Zhu et al., 2008). Tomato (de La Garza, Gregory, & Hanson, 2007) and rice grain (Storozenko et al., 2007) have been fortified in folates and corn seeds and soybean seeds (Karunanandaa et al., 2005) in vitamin E. Furthermore, an attractive alternative is to synthetize LC-PUFs in plants, notably in oilseeds to replace the fatty acids which are usually stored on triacylglycerol (reviewed by Venegas-Caleron, Sayanova, & Napier, 2010).

Animal breeding also offers the possibility to obtain improved food products. In this way, a lot of studies have been done to examine the sources of nutrients available for inclusion in animal diets and their subsequent transfer into products obtained. Matsushita et al. (2007) carried out and study in which characterized the fatty acids profiles and physico-chemical parameters of milk samples from Saanen goats fed diets enriched with 3% of three different vegetable oils (soybean, canola and sunflower). The milks obtained presented different concentration of conjugated linoleic acid (CLA) depending on the vegetable oil added to animal fed. In addition (Laible, 2009), many other milk modifications have been suggested to improve the nutritional quality of milk and it’s processing into dairy products. Woods & Fearon, 2009 examined in a review the sources of fatty acids available for inclusion in animal diets and their subsequent transfer into meat, eggs or milk. Juniper, Phipps, Ramos-Morales, and Bertin (2009) determined the concentration of total selenium and the proportion of total (Se) comprised as selenomethionine and selenocysteine, as well as meat quality of lambs offered diets with an increasing dose rate of selenized enriched yeast or sodium selenite.

Specific technologies for the manufacture of functional food that prevent the deterioration of physiologically active compounds

Microencapsulation

Microencapsulation is the envelopment of small solid particles, liquid droplets or gases in a coating (Thiess, 1987). Microencapsulation is based on the embedding effect of a polymeric matrix, which creates a microenvironment in the capsule able to control the interactions between the internal part and the external one (Borgogna, Bellich, Zorzin, Lapasus, & Cesaro, 2010). Microencapsulation allows the protection of a wide range of materials of biological interest, from small molecules and protein (enzymes, hormones,…) to cells of bacterial, yeast and animal origin (Thiess, 2005). For this reason such versatile technology is widely studied and exploited in the high technological fields of biomedicine and biopharmaceuticals, for application ranging from cell therapy to drug delivery (Smidsrød & Skjak-Bræk, 1990). The same characteristics make microencapsulation suitable for food industry applications, in particular for the production of high value aliments and nutraceuticals.
Many encapsulation procedures have been proposed but none of them can be considered as a universally applicable procedure for bioactive food components. This is caused by the fact that individual bioactive food components have their own characteristic molecular structure (Augustin & Hemar, 2009). However compatibility with the bioactives is not the only requirement an encapsulation procedure has to meet. It also should have specific characteristics to withstand influences from the environment (Augustin & Hemar, 2009).

An important requirement is that the encapsulation system has to protect the bioactive component from chemical degradation (e.g., oxidation or hydrolysis) to keep the bioactive component fully functional. A major obstacle in the efficacious delivery of bioactive food components is not only the hazardous events that occur during passage through the gastrointestinal tract but also the deleterious circumstances during storage in the product that serves as vehicle for the bioactive components (de Vos, Faas, Spasovic, & Sikkema, 2010). Many food components may interfere with the bioactivity of the added bioactive food component. It is therefore mandatory that the encapsulation procedure protects the bioactive component during the whole period of processing, storage, and transport (Gibbs, Kermasha, Alli, & Mulligan, 1999). Another requirement is that the encapsulation system allows an efficient package load (McClements, Decker, & Park, 2009a; McClements, Decker, Park, & Weiss, 2009b). How ‘efficient’ this package load should be depends on the type of molecule that is desired as bioactive component and the specific product that serves as vehicle. Administration of large structures such as probiotics will require a higher efficiency of package than molecular structures such as vitamins. When choosing an encapsulation system with high package efficiency, it is always essential to choose a system that can be easily incorporated into the food without interfering with the texture and taste of the food. And, last but certainly not least, it might be necessary to design the encapsulation system as such that the bioactive component is released in a specific site of the gastrointestinal tract (de Vos et al., 2010).

The studies addresses a broad array of questions and challenges related to microencapsulation in four main research directions:

- Microencapsulating materials
- Wall (matrix) materials for microencapsulation.
- Processes for microencapsulation.
- Properties and functionality of encapsulated systems.

Some studies have reported the success on encapsulating bioactive compounds. The most commonly applied bioactive food molecules that are already encapsulated in industrial applications are lipids, proteins, and carbohydrates (Augustin & Hemar, 2009). Lipids include fatty acids, phospholipids, carotenoids, and oil-soluble vitamins (Hamäläinen, Nieminen, Vuorela, Heinonen, & Moilanen, 2007; McClements et al., 2009a,b). They cannot be easily solved in food products because of their extreme low solubility in water and polyunsaturated fatty acids, which are highly susceptible to oxidation, and are now widely applied in powdered products thanks to encapsulation processes that form an effective barrier for oxygen (de Vos et al., 2010). Therefore many different approaches of encapsulation have been proposed for encapsulation of lipids in order to be able to apply them in a large variety of food products (McClements et al., 2009a,b). Bioactive proteins also might require encapsulation. Many food derived peptides act as growth factor, anti-hypertensive agent, antioxidant or immune regulatory factor (Hartmann & Meisel, 2007; McClements et al., 2009a,b). Some of these proteins have to reach the site of uptake in the small bowel in an intact conformation in order to exert a beneficial health effect (de Vos et al., 2010). Most peptides even require hydrolysis in the stomach and small intestine in order to release specific bioactive peptides or amino acids (McClements et al., 2009a,b). Thus whether encapsulation for proteins has to be considered depends on the type of protein, its envisioned health effect and the product that serves as vehicle for the bioactive protein (de Vos et al., 2010). Carbohydrates that can benefit from microencapsulation are mainly bioactive carbohydrates that are found in dietary fibers (Redgwell & Fischer, 2005). The fibers or its components that would benefit most from encapsulation are the soluble non-digestible polysaccharides. These fibers have been
included for cholesterol reduction, reduction of glycemic fluctuations, prevention of constipation, probiotic effects, and even for the prevention of cancer (McClements et al., 2009a,b; Redgwell & Fischer, 2005). The main challenge in this area is not to target the fibers to specific parts of the gut but to increase the amount of fibers in food in order to achieve the aforementioned health benefits (de Vos et al., 2010). The major encapsulation effort in this area is therefore improving the food load of fibers by packing enough fibers in capsules without interfering with the product quality such as changes in texture, mouth feel, or flavor (de Vos et al., 2010).

Encapsulation methods have been also widely applied to enhance viability of probiotic bacteria in commercial products.

Several authors studied the probiotic strain survival under simulated gastrointestinal conditions (Mokarram, Mortazavi, Habibi Najafi, & Shahidi, 2009) and similarly for liquid based products such as dairy products (Kailasapathy, 2006). Hou, Lin, Wang, & Tzen, in 2003 developed a technique to protect Lactobacillus delbrueckii ss. bulgaricus by encapsulation of bacterial cells within artificial sesame oil emulsions. In 2004, Krasaekoopt, Bhandari, & Deeth, evaluated the influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. In the same way, Ross, Gusils, and Gonzalez (2008) improved a microencapsulating method using non fat milk cell suspension mixed with sodium alginate solution to increase a strain survival. Mokarram, Mortazavi, Najafi, and Shahidi (2009) studied the influence of multi stage coating on the properties of alginate beads and the survivability of microencapsulated Lactobacillus bacteria in the beads coated with one or two layers of alginate. In 2010, Weinbreck, Bodnár, & Marco, evaluated the use of microencapsulation to maintain probiotic Lactobacillus rhamnosus GG (LGG) viability during exposure to detrimentally high levels of water activity in order to lengthen the shelf-life of probiotic bacteria in dry products such as infant formula powder.

Even if microencapsulation would be able to enhance the survival rate of probiotics this would not immediately imply that we will increase functional survival (de Vos et al., 2010). During recent years it has become clearer that probiotic effects are determined by the presence of specific bioactive molecules or effector molecules in the cell envelope of probiotic bacteria (van Baarlen et al., 2009; Kleerebezem & Vaughan, 2009; Konstantinov et al., 2008). These effector molecules are (glyco) proteins and have to be preserved in order to achieve functional effects (Konstantinov et al., 2008). The survival of these effector molecules in the product and during passage in the gastrointestinal tract is even more important than the survival of numbers of probiotics. The effector molecules that are presently identified (Konstantinov et al., 2008) are susceptible for the acidic circumstances and digestive enzymes in the stomach at beginning of the small bowel. Preserving and protecting these effector molecules will be a major challenge in the near future (Ledeboer, Nauta, Sikkema, Laudum, Niederberger, & Sijbesma, 2006).

Edible films and coatings

Any type of material used for enrobing (i.e. coating or wrapping) various food to extend shelf-life of the product that may be eaten together with food with or without further removal is considered an edible film or coating (Pavlath & Orts, 2009). Edible films and coatings are applied on many products to control moisture transfer, gas exchange or oxidation processes. For film-forming materials dispersed in aqueous solutions, solvent removal is required to achieve solid film formation and control of its properties (Hernandez-Izquierdo & Krochta, 2008). Edible films can be formed via two main processes: a “wet process” in which biopolymers are dispersed or solubilized in a film-forming solution (solution casting) followed by the evaporation of the solvent, and a “dry process” which relies on the thermoplastic behavior exhibited by some proteins and polysaccharides at low moisture levels in compression molding and extrusion (Liu, Kerry, & Kerry, 2006).

One major advantage of using edible films and coatings is that they have a high potential to carry active ingredients such as antibrowning agents, colorants, flavors, nutrients, spices and antimicrobial compounds that can extend product shelf-life, reduce the risk of pathogen growth on food surfaces and provide specific nutrients that affect beneficially one or more functions of the body.

Some studies have reported the effect of the addition of active compounds in the functionality of edible films. For instance, Mei and Zhao (2003) evaluated the feasibility of milk protein-based edible films to carry high concentrations of calcium (5 or 10% w/v) and vitamin E (0.1% or 0.2% w/v). In contrast, Park and Zhao (2004) reported that the water barrier property of the chitosan-based films was improved by increasing the concentration of mineral (5—20% w/v zinc lactate) or vitamin E in the film matrix. Nevertheless, the tensile strength of the films was affected by the incorporation of high concentrations of calcium or vitamin E. Gómez-Estaca, Montero, Giménez, and Gómez-Guillén (2007) studied the effect of functional edible film enriched with oregano or rosemary extract, a gelatine-chitosan film-coating and/or high pressure processing on the microbiological and oxidative stability of cold-smoked sardine. Films enriched with oregano or rosemary extract were able to slow lipid oxidation, but they failed to slow microbial growth. Gómez-Guillén, Ilh, Bifani, Silva, and Montero (2007) obtained edible films based on tuna-fish gelatine with extracts of two muerta ecotypes leaves (Ugni molinae Turcz). The edible films of tuna-fish gelatine were transparent and showed acceptable mechanical properties and barrier properties to water vapour and UV light. In the case of films with Soloyo Grande ecotypes, it was possible to increase significantly the antioxidant properties of the film, when natural extracts with high polyphenols content were added, producing only minor modifications
of the film properties. When using an extract with a bigger content of polyphenols, like the Soloyo Chico ecotype, the antioxidant capacity of the film was increased, but the mechanical properties were decreased, due to a greater interaction between polyphenols and proteins.

Several researchers have endeavored to incorporate minerals, vitamins and fatty acids into edible film and coating formulations to enhance the nutritional value of some fruits and vegetables, where these micronutrients are present in low quantities. Tapia et al. (2008) reported that the addition of ascorbic (1% w/v) to the alginate and gellanbased edible coatings helped to preserve the natural ascorbic acid content in fresh-cut papaya, thus helping to maintain its nutritional quality throughout storage. Han (2002) indicate that chitosan-based coatings had capability to hold high concentrations of calcium or vitamin E, thus significantly increasing their content in fresh and frozen strawberries and red raspberries. Similarly, Hernández-Muñoz, Almenar, Ocio, and Gavara (2006) observed that chitosan-coated strawberries retained more calcium gluconate (3079 g/kg dry matter) than strawberries dipped into calcium solutions (2340 g/kg).

The addition of probiotics to obtain functional edible films and coatings has been scarcely studied. Tapia et al. (2007) developed the first edible films for probiotic coatings on fresh-cut apple and papaya, observing that both fruits were successfully coated with alginate or gellan film-forming solutions containing viable 10^6 cfu/g bifidobacteria.

Vacuum impregnation

Vacuum impregnation has been considered as a useful way to introduce desirable solutes into the porous structure of foods, conveniently modify their original composition as an implement for development of new products. Physiologically active compounds may be introduced into fruit and vegetable products using this technique without modifying their integrity. This so-called ‘direct-formulation’ distinguishes it from other processing methods (Mavroudis, Gekas, & Sjoholm, 1998a,1998b; Torreggiani, 1993).

The use of vacuum impregnation to develop functional foods can be orientated in two ways. On one hand, several studies use the vacuum impregnation technique to modify desirable the original composition of one porous food. Fito et al. (2001) first evaluated the feasibility of using vacuum impregnation for mineral fortification of fruits and vegetables from an engineering point of view. Mathematical models were developed to determine the concentration of different minerals in impregnation solutions required to achieve a 20–25% dietary reference intake (DRI) fortification in 200g of samples. Following the modeling prediction, experimental validation confirmed that VI could be an effective method for the enrichment of fruits and vegetables with minerals, vitamins or other physiologically active components. Gras, Vidal, Betoret, Chiralt, and Fito (2003) evaluated calcium fortification of eggplants, carrots, and oyster mushroom using VI with sucrose solutions, and found that raw material variability induces significant differences in the final impregnation level. Xie and Zhao (2003a,b) studied calcium and zinc fortification of fruits using VI processing of high fructose corn syrup solution containing calcium and/or zinc in fresh-cut apples, strawberry slices, and whole marionberry. Cortés, Osorio, and García (2007) developed apple products enriched with Vitamin E (100% IDR/200g fresh apple) and evaluated the shelf-life of the products after drying at 40 °C in function of colour, texture and stability of vitamin E at different storage conditions. Anino, Salvatori, and Alzamora (2006) analyzed the ability of apple matrix for calcium incorporation by two different impregnation techniques (in vacuum or at atmospheric pressure) and determined the effect of these treatments on material compression behavior. Some authors studied the effect of the mineral fortification of fruits on posterior osmotic dehydration operation (Barrera, Betoret, & Fito, 2004; Barrera, Betoret, Corell, & Fito, 2009; Moraga, Moraga, Fito, & Martínez-Navarrete, 2009).

Betoret et al. (2003) developed probiotic-enriched dried fruits using VI technique by applying VI process either with commercial apple juice containing Saccharomyces cerevisiae, or with whole milk or apple juice containing 10^9 or 10^10 cfu/ml of Lactobacillus casei (spp. rhamnosus). It was reported that dried apple samples could contain about 10^6 cfu/g Lactobacillus casei (spp. rhamnosus), a similar level to that in commercial dairy products.

More recently, some studies are focused on the protection this technology can provide to the active compounds. Watanabe, Yoshimoto, Okada, and Nomura (2011) studied the effect of impregnation using sucrose solution on stability of anthocyanin in strawberry jam. Strawberry jam mixed with or produced from strawberry impregnated with sucrose from 0.29 to 1.46 mol/L was prepared, and the stability of anthocyanin in the jam was evaluated. Results obtained suggested that the impregnation of sucrose in advance of the jam preparation stabilized the anthocyanin in the jam more strongly than the mere addition of sucrose during the preparation.

Recent technologies that contribute to a custom designed functional foods: nutrigenomics

While a number of formal definitions exist; in essence nutrigenomics (sometimes called nutritional genomics) considers the interactions between foods or dietary supplements and an individual’s genome, and the consequent downstream effects on their phenotype. It recognizes that appropriate dietary advice for one individual may be inappropriate, or actual harmful, to another. The field has the potential to provide tailored nutritional advice or develop specialist food products for population or for individuals and is still considered as an emerging science (Ferguson, Philpott, & Barnett, 2010).
The key steps involve the following considerations:

1. Ferguson, 2009:
 - Evidence for bioactivity.
 - Mechanism of action.
 - Enhancing levels via diet.
 - Influence of genotype on bioactivity.

2. Ferguson et al., 2010:
 - Identification of a genetic component to the disorder.
 - Size of the component in relation to other causes of diseases susceptibility.
 - Identification of the gene(s) associated with the effect.
 - Functional variants in those genes.
 - Interaction of those variants with diet and/or other environmental factors to cause the phenotype.

Sutton (2007) demonstrated that aqueous extracts of kiwifruit and avocado had very low cytotoxicity and high anti-inflammatory activity in a Crohn’s gene-specific assay. Non-aqueous extracts of kiwifruit, blueberry, avocado and broccoli had similarly high anti-inflammatory activity, albeit with slightly higher cytotoxicity than the aqueous extracts. Also Sutton, in 2007 has used functional snack bar products to deliver targeted glycaemic impacts.

Fenech et al. (2005) carried out a study in which illustrate the strong impact of nine micronutrients and their interactions on genome damage depending on level of intake. The micronutrients were vitamin E, calcium, folate, retinol, nicotin acid, B-carotene, riboflavin, pantothenic acid and biotin.

Ferguson et al. (2010) studies aimed to understand how different foods or food components might interact with a particular genotype to cause the chronic intestinal inflammation which is a hallmark of Crohn’s disease. The model Interleukin-10 Gene-Deficient (IL10−/−) Mouse has been used to test the efficacy of potential food components including polyunsaturated fatty acids (Knoch et al., 2009), fish oils (Hegazi, Saad, Mady, Matarese, O'Keefe, & Kandill, 2006), flaxseed oil (Saah, Sady, Matarese, O'Keefe, & Kandill, 2006), and some probiotics (McCarthy, O'Mahony, O'Callaghan, Sheil, Vaughan, Fitzimons, Fitzgibbon, O'Sullivan, Kiely, Collins, & Shanahan, 2003). The Multidrug Resistance Gene-Deficient (mrd1a−/−) Mouse model is another tool (Ferguson et al., 2010) used to understand the development of intestinal inflammation (Dommels et al., 2007), and to test the efficacy of food components such as curcumin and rutin (Nones et al., 2009) and green tea (Nones et al., 2008) on the prevention of this phenotype.

While nutrigenomics can suppose a wide window of opportunities in the area of functional foods the field itself is still in its infancy and there are some aspects not well clarified yet. For example Ronteltap, van Trijp, Renes, and Frewer (2007) affirmed the nutrigenomics area is not well demarcated yet. Also, Ronteltap et al. (2007) showed that there is no unanimity among experts concerning the definition of nutrigenomics, its development over time and the critical factors that determine its success or failure. Furthermore, by its very nature, nutrigenomics gives rise to a number of ethical and legal issues. Experts recognize this as a critical factor for its development (Chadwick, 2004; Penders, Horstman, Saris, & Vos, 2007).

Being more accurate in practical problem science has, Ferguson et al. (2010) affirmed the Nutrigenomics New Zealand model provides an approach towards personalized, genotype-based nutrition that has the potential to provide food products and personalized advice to benefit health at the individual or population level. There is convincing evidence that SNPs (Single Nucleotide Polymorphisms) in certain genes may profoundly influence the biological response to nutrients. However, effects of single-gene variants on risk or risk factor levels of a complex disease tend to be small and inconsistent. Increased sensitivity of current biological measurements, plus methods of integrating information on combinations of relevant SNPs or CNVs (Copy Number Variations) in different genes, will become necessary to move the field to a higher dimension. Many of the challenges are in bioinformatics, especially in relation to reducing the complexity of multidimensional data sets (Kaput & Dawson, 2007). To date, there are only sporadic examples of clinical trials utilizing these technologies, and we have not investigated potential adverse effects of a genotype-derived dietary intervention. There are a considerable number of issues to be addressed before genomic approaches can become an acceptable method to guide food development or nutritional recommendations.

Conclusions

There is no doubt that functional food development has a great interest from consumers, industries, governments and universities. From the research and development point of view functional foods represent an opportunity to obtain innovative products that satisfy considerably this demand that already exists. The technologies mainly used as it is possible to see in the Fig. 2, has changed considerably over the years. Thus, while traditional techniques are the most commonly used for development of functional foods, from years 2000 until 2010 the techniques aimed towards personalized nutrition have grown greatly.

There is a group of technologies, which have grown significantly, that form a structure aimed to prevent the deterioration of physiologically active compounds. In this way, it is important to note the importance of the relationship “structure-property”. The functional effect of a food or food component depends on the active component gaining access to the functional target site. However, foods are mostly complex mixtures of macro- and micro-components that can trap active compound, modulate its release or inhibit its activity (Chen et al., 2006; Chen & Subirade, 2007). Thus, the food matrix both in its raw state, after storage or culinary preparation can have a significant influence...
on the activity or release on the key components. Selection and development of an appropriate food vehicle that maintain the active molecular form until the time of consumption, and deliver this form to the physiological target within the organism, is an important step to the success of a functional food. As an example, it has been demonstrated that plant sterol efficacy differs across various matrices, the milk matrix being almost three times more effective than in bread or cereal (Jones & Jew, 2007).

Acknowledgments

The authors acknowledge the Ministerio de Ciencia e Innovación for its contribution throughout the projects AGL2009-09905 and PET2008_0015.

References

Fench, M., Baghurst, P., Ludlere, W., Turner, J., Record, S., Ceppi, M., et al. (2005). Low intake of calcium, folate, nicotinic acid, vitamin E, retinol, b-carotene and high intake of pantothenic acid, biotin and riboflavin are significantly associated with increased genome instability results from a dietary intake and micronucleus index survey in South Australia. Carcinogenesis, 26(5), 991–999.

Rivas, A., Rodrigo, D., Company, B., Sampedro, F., & Rodrigo, M. (2007). Effects of pulsed electric fields on water-soluble vitamins and ACE inhibitory peptides added to a mixed orange juice and milk beverage. Food Chemistry, 104, 1550–1559.

